Add like
Add dislike
Add to saved papers

Experimental versus theoretical log D 7.4 , pK a and plasma protein binding values for benzodiazepines appearing as new psychoactive substances.

The misuse of benzodiazepines as new psychoactive substances is an increasing problem around the world. Basic physicochemical and pharmacokinetic data is required on these substances to interpret and predict their effects upon humans. Experimental log D7.4 , pKa and plasma protein binding values were determined for 11 benzodiazepines that have recently appeared as new psychoactive substances (3-hydroxyphenazepam, 4'-chlorodiazepam, desalkylflurazepam, deschloroetizolam, diclazepam, etizolam, flubromazepam, flubromazolam, meclonazepam, phenazepam, and pyrazolam) and compared with values generated by various software packages (ACD/I-lab, MarvinSketch, ADMET Predictor and PreADMET). ACD/I-LAB returned the most accurate values for log D7.4 and plasma protein binding while ADMET Predictor returned the most accurate values for pKa . Large variations in predictive errors were observed between compounds. Experimental values are currently preferable and desirable as they may aid with the future 'training' of predictive models for these new psychoactive substances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app