Add like
Add dislike
Add to saved papers

Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery.

Biomaterials 2018 May
Combination of biological entities with functional nanostructure would produce the excellent systemic drug-delivery vehicles that possess the ability to cross the biological barriers. Herein, from a biomimetic point of view, erythrocyte membrane bioinspired optical nanocarrier is fabricated by integrating Red blood cell (RBC) membrane vesicle with near-infrared persistent luminescence nanophosphors (PLNPs). The triple-doped zinc gallogermanate nanostructures with super-long near-infrared persistent luminescence (ZGGO) are used as optical emission center, mesoporous silica coated on the PLNPs (ZGGO@mSiO2 ) is employed for drug delivery, and the RBC membrane vesicle is introduced for biomimetic functionalization to ensure the developed nanocarriers bypass macrophage uptake and systemic clearance. Owing to the coating of natural erythrocyte membrane along with membrane lipids and associated membrane proteins, the proposed bioinspired nanocarriers have exhibited cell-mimicking property. Retaining the applicability of PLNPs core that favored in vitro excitation, the developed RBC-ZGGO@mSiO2 biomimetic nanocarriers have demonstrated intense fluorescence, super-long persistent luminescence, monodispersed nanosize, red light renewability, and excellent biocompatibility. In vivo mice bioimaging and biodistribution study demonstrate the erythrocyte membrane bioinspired nanoprobe loaded with doxorubicin as ideal nanocarriers for long-circulating bioimaging, in situ real-time monitoring and drug delivery. We believe the PLNPs-based biomimetic nanocarriers offer a promising nano-platform for diagnostics and therapeutics application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app