Add like
Add dislike
Add to saved papers

Femtosecond Laser Mass Spectrometry and High Harmonic Spectroscopy of Xylene Isomers.

Scientific Reports 2018 Februrary 29
Structural isomers, molecules having the same chemical formula but with atoms bonded in different order, are hard to identify using conventional spectroscopy and mass spectrometry. They exhibit virtually indistinguishable mass spectra when ionized by electrons. Laser mass spectrometry based on photoionization of the isomers has emerged as a promising alternative but requires shaped ultrafast laser pulses. Here we use transform limited femtosecond pulses to distinguish the isomers using two methods. First, we probe doubly charged parent ions with circularly polarized light. We show that the yield of doubly charged ortho-xylene decreases while para-xylene increases over a range of laser intensities when the laser polarization is changed from linear to circular. Second, we probe high harmonic generation from randomly oriented isomer molecules subjected to an intense laser field. We show that the yield of high-order harmonics varies with the positioning of the methyl group in xylene isomers (ortho-, para- and meta-) and is due to differences in the strength of tunnel ionization and the overlap between the angular peaks of ionization and photo-recombination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app