Add like
Add dislike
Add to saved papers

Curcumin-Functionalized Ag/Ag 2 O Nanocomposites: Efficient Visible-Light Z-scheme Photocatalysts.

Curcumin-functionalized Ag/Ag2 O (c-Ag/Ag2 O) nanocomposites with varying proportions of curcumin and Ag/Ag2 O were prepared by a simple one pot green synthesis protocol in aqueous medium. The plasmonic band undergoes slight redshift, broadening and decrease in intensity with increase in the proportion of Ag2 O formed. These composite nanoparticles were found to be efficient visible-light photocatalysts for aerobic oxidation of methyl orange and rhodamine B (RhB). Functionalization by curcumin significantly enhanced the photocatalytic activity with good reusability. The photocatalytic oxidation rate showed super linear increase with light intensity because of localized surface plasmon resonance (LSPR)-induced strong near field. The trapping experiments confirmed that superoxide radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism is proposed to explain the possible charge transfer and separation behavior of electron-hole pairs among Ag, Ag2 O and curcumin under visible-light irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app