Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury.

Hypoxic/ischemic brain damage (HIBD) leads to high neonatal mortality and severe neurologic morbidity. However, the molecular mechanism of HIBD in the neonatal infant is still elusive. Long non-coding RNAs are shown as important regulators of brain development and many neurological diseases. Here, we determined the role of long noncoding RNA-GAS5 in HIBD. GAS5 expression was significantly up-regulated in hypoxic/ischemic-injured neonatal brain and hippocampal neurons. GAS5 silencing protected against hypoxic/ischemic-induced brain injury in vivo and primary hippocampal neuron injury in vitro. Mechanistically, GAS5 regulated hippocampal neuron function by sponging miR-23a. Intracerebroventricular injection of GAS5 shRNA significantly decreased brain GAS5 expression, reduced brain infarct size, and improved neurological function recovery. Collectively, this study suggests a promising therapeutic approach of GAS5 inhibition in the treatment of neonatal HIBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app