Add like
Add dislike
Add to saved papers

Long term exposure to low dose neurotoxic pesticides affects hatching, viability and cholinesterase activity of Artemia sp.

The brine shrimp Artemia was used as a model organism to test toxicity of several neuroactive pesticides (chlorpyrifos (CLP), chlorpyrifos oxon (CLP ox), diazinon (DZN), carbaryl (CBR)) following exposure to far below than lethal doses. Cysts were exposed to the pesticides in order to test a scenario similar to actual coastal environment contamination, by analyzing different responses. Cysts were rehydrated in water containing the pesticides at concentrations ranging from 10-11 to 10-5  M, for 72, 96 and 192 h, respectively. For these exposure times, morpho-functional and biochemical parameters, such as hatching speed and viability were investigated in the larvae together with cholinesterase (ChE) activity quantification and histochemical localization. Finally, ChE inhibition was also compared with conventional selective ChE inhibitors. Results showed that CLP ox and CBR caused a significant dose-dependent decrease in hatching speed, followed by high percentages of larval death, while CLP and DZN were responsible for irregular hatching patterns. In addition, the pesticides mostly caused larval death some days post-hatching, whereas this effect was negligible for the specific ChE inhibitors, suggesting that part of pesticide toxicity may be due to molecules other than the primary target. ChE activity was observed in the protocerebrum lobes, linked to the development of pair eyes. Such activity was inhibited in larvae exposed to all pesticides. When compared to conventional selective inhibitors of ChE activities, this inhibition demonstrated that the selected pesticides mainly affect acetylcholinesterase and, to a lesser extent, pseudocholinesterases. In conclusion, the brine shrimp is a good model to test the environmental toxicity of long term exposure to cholinergic pesticides, since changes in hatching speed, viability and ChE activity were observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app