Add like
Add dislike
Add to saved papers

Chemotherapy diminishes lipid storage capacity of adipose tissue in a preclinical model of colon cancer.

BACKGROUND: Accelerated loss of adipose tissue in cancer is associated with shorter survival, and reduced quality of life. Evidence is emerging suggesting tumour association with alterations in adipose tissue, but much less is known about drug-related mechanisms contributing to adipose atrophy. Identification of mechanisms by which tumour and cancer treatments, such as chemotherapy, affect adipose tissue are required to develop appropriate therapeutic interventions to prevent fat depletion in cancer. This pre-clinical study aimed to assess alterations in adipose tissue during the clinical course of cancer.

METHODS: Fischer 344 rats bearing the Ward colorectal tumour were euthanized before chemotherapy, after 1- cycle, or 2-cycles of a combination chemotherapy consisting of Irinotecan (CPT-11) combined with 5-fluorouracil (5-FU), which recapitulates first line treatment for human colorectal cancer. Periuterine adipose tissue was isolated. Healthy rats served as a reference group. Histological analysis (hematoxylin and eosin), Real-time PCR (TaqMan) and proteomic analysis (LC-MS/MS) were performed.

RESULTS: Larger adipocytes (3993.7 ± 52.6 μm2 ) in tumour-bearing animals compared to the reference group (3227.7 ± 36.7 μm2 ; p < 0.001) was associated with reduced expression of proteins involved in mitochondrial fatty acid oxidation. The presence of a tumour has a significant effect on phospholipid but not triglyceride fatty acid composition. There were greater proportions of saturated fatty acids concurrent with lower monounsaturated fatty acids within the PL fraction of adipocytes in tumour-bearing animals. Chemotherapy treatment decreased the size of adipocytes (2243.9 ± 30.4 μm2 ; p < 0.001) and led to depletion of n-3 polyunsaturated fatty acids in adipose tissue triglyceride. Evaluation of the proteome profile revealed decreased expression of proteins involved in ATP generation, β-oxidation, and lipogenesis. Overall, adipose tissue may not be able to efficiently oxidize fatty acids to provide energy to maintain energy demanding pathways like lipogenesis inside the tissue.

CONCLUSIONS: In conclusion, metabolic adaptations to mitochondrial impairment may contribute to diminished lipid storage capacity of adipose tissue following chemotherapy delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app