Add like
Add dislike
Add to saved papers

Inhibition of adenosine monophosphate-activated protein kinase suppresses bone morphogenetic protein-2-induced mineralization of osteoblasts via Smad-independent mechanisms.

Endocrine Journal 2018 March 29
Previous studies showed that adenosine monophosphate-activated protein kinase (AMPK), which plays as an intracellular energy sensor, promotes the differentiation and mineralization of osteoblasts via enhancing expression of bone morphogenetic protein (BMP)-2, which is a potent inducer of osteoblastogenesis. Thus, the aim of this study was to examine the roles of AMPK in BMP-2-induced osteoblastogenesis. We used a murine osteoblastic cell line MC3T3-E1 and a murine marrow stromal cell line ST2. BMP-2 (50 and 100 ng/mL) stimulated alkaline phosphatase (ALP) activity and enhanced mineralization of MC3T3-E1 cells, while the effects of BMP-2 were partly abolished by an inhibitor of AMPK, ara-A (0.1 mM). Real-time PCR showed that BMP-2 significantly increased the mRNA expressions of Alp, osteocalcin (Ocn), Runx2, Osterix and Dlx-5 in MC3T3-E1 cells, while co-incubation of ara-A significantly decreased the BMP-2-stimulated expression of Alp, Ocn, and Runx2. Moreover, co-incubation of ara-A suppressed the BMP-2-induced upregulation of Alp and Ocn in ST2 cells. Western blot analysis showed that BMP-2 phosphorylated Smad1/5 although it did not affect AMPK phosphorylation in MC3T3-E1 cells. Furthermore, a BMP receptor inhibitor LDN-193189 inhibited the phosphorylation of Smad1/5, but did not affect AMPK. In addition, co-incubation of ara-A did not affect BMP-2-induced phosphorylation of Smad1/5. These findings suggest that the inhibition of AMPK activation reduces the osteo-inductive effects of BMP-2 by decreasing the expression of Alp, Ocn, and Runx2 through Smad-independent mechanisms in osteoblastic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app