Add like
Add dislike
Add to saved papers

Characterization and comparative analysis of immunoglobulin lambda chain diversity in a neonatal porcine model.

To elucidate how antigen exposure and selection shape the porcine antibody repertoires, we investigated the immunoglobulin lambda light chain (IGL) gene repertoires of the binary cross-bred (Yorkshire×Landrace) pig at different developmental stages, pre-suckle neonate (0days), wean piglet (35days) and growing pig (75days) under normal farming conditions. Immunoglobulin lambda light transcript (IGLV-J-C) clones of the peripheral blood mononuclear cells (PBMCs) from these different developmental stages were assessed for IGL combination, junction and sequence diversity. Previous research has revealed that IGLV8 plays a major role in immunity during the early fetus stage and that IGLV3 accounts for 30% of the neonatal IGLV repertoires. Here, we found that the antibody profile exhibited salient features at different stages. The usage of the IGLV3-3 subclass gradually decreased during development, in contrast, the utilization of IGLV8 (IGLV8-10, IGLV8-13 and IGLV8-18), which started in the fetal stage, has increased in the growing stage. Moreover, the junction diversity, as measured by the IGLV hypervariable complementarity determining region 3 (CDR3L) lengths, was constant during the different stages. The complete junction mutation ratio clearly increased in the growing pig compared to that in the younger pig. Our data provide new insights into the postnatal porcine IGLV repertoires maturation which can lay the foundation for porcine antibody gene research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app