Add like
Add dislike
Add to saved papers

Angiotensin 1-7 modulates electrophysiological characteristics and calcium homoeostasis in pulmonary veins cardiomyocytes via MAS/PI3K/eNOS signalling pathway.

BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia, and pulmonary veins (PVs) play a critical role in triggering AF. Angiotensin (Ang)-(1-7) regulates calcium (Ca2+ ) homoeostasis and also plays a critical role in cardiovascular pathophysiology. However, the role of Ang-(1-7) in PV arrhythmogenesis remains unclear.

MATERIALS AND METHODS: Conventional microelectrodes, whole-cell patch-clamp and the fluo-3 fluorimetric ratio technique were used to record ionic currents and intracellular Ca2+ in isolated rabbit PV preparations and in single isolated PV cardiomyocytes, before and after administration of Ang-(1-7).

RESULTS: Ang (1-7) concentration dependently (0.1, 1, 10 and 100 nmol/L) decreased PV spontaneous electrical activity. Ang-(1-7) (100 nmol/L) decreased the late sodium (Na+ ), L-type Ca2+ and Na+ -Ca2+ exchanger currents, but did not affect the voltage-dependent Na+ current in PV cardiomyocytes. In addition, Ang-(1-7) decreased intracellular Ca2+ transient and sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. A779 (a Mas receptor blocker, 3 μmol/L), L-NAME (a NO synthesis inhibitor, 100 μmol/L) or wortmannin (a specific PI3K inhibitor, 10 nmol/L) attenuated the effects of Ang-(1-7) (100 nmol/L) on PV spontaneous electric activity.

CONCLUSION: Ang-(1-7) regulates PV electrophysiological characteristics and Ca2+ homoeostasis via Mas/PI3K/eNOS signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app