Journal Article
Review
Add like
Add dislike
Add to saved papers

The cerebrospinal fluid and barriers - anatomic and physiologic considerations.

The cerebrospinal fluid (CSF) space consists of the intracerebral ventricles, subarachnoid spaces of the spine and brain (e.g., cisterns and sulci), and the central spinal cord canal. The CSF protects the central nervous system (CNS) in different ways involving metabolic homeostasis, supply of nutrients, functioning as lymphatic system, and regulation of intracranial pressure. CSF is produced by the choroid plexus, brain interstitium, and meninges, and it circulates in a craniocaudal direction from ventricles to spinal subarachnoid space from where it is removed via craniocaudal lymphatic routes and the venous system. The CSF is renewed 3-5 times daily and its molecular constituents are mainly blood-derived (80%), while the remainder consists of brain-derived and intrathecally produced molecules (20%). The CSF space is separated from the vascular system by the blood-CSF barrier (BCB), whereas the blood-brain barrier (BBB), responsible for maintaining the homeostasis of the brain, is located between brain parenchyma and vascular system. Although both barriers have similar functions, they differ with regard to their morphologic and functional properties. Both barrier systems are permeable not only for small molecules, but also for macromolecules and circulating cells. The transport of molecules across the BBB and BCB is regulated by passive diffusion (e.g., albumin, immunoglobulins) and facilitated or active transport (e.g., glucose). The extracellular space volume, potassium buffering, CSF circulation, and interstitial fluid absorption are mainly regulated by aquaporin-4 channels, which are abundantly located at the blood-brain and brain-CSF interfaces. The composition of CSF shows a high dynamic range, and the levels of distinct proteins vary due to several influencing factors, such as site of production (brain or blood-derived), site of sampling (ventricular or lumbar), CSF flow rate (BCB function), diurnal fluctuations of CSF production rate, and finally, molecular size of blood-derived proteins (IgM vs. albumin) and circadian rhythm (glucose, prostaglandin D synthase). Alterations of lumbar CSF are mainly influenced by processes of the CNS located adjacent to the ventricular and spinal CSF space and less by pathologies in cortical areas remote from the ventricles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app