Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Study of the Pharmacokinetic Properties and the In Vivo Kinetics of Erythrocytes Loaded With Dexamethasone Sodium Phosphate in Healthy Volunteers.

The objectives of this 2-phase study were to elucidate pharmacokinetics (PK), in vivo 24-hour recovery, and red blood cell (RBC) survival properties of RBC-encapsulated dexamethasone sodium phosphate (DSP) prepared using the EryDex System (EDS). The 24-hour RBC recovery and T50 survival phase studied subjects were randomized to receive autologous RBCs loaded with either 15-20 mg DSP (Group 1A) or sham saline (Group 2A). Loaded RBCs were radiolabeled with 51-Cr, and the labeled RBCs were followed over time in vivo. The PK phase evaluated dose levels of 2.5-5 mg (Group 1B) and 15-20 mg (Group 2B) DSP encapsulated in RBCs infused into healthy randomized subjects. The mean ± SD 24-hour RBC recovery was 77.9% ± 3.3% and 72.7% ± 10.5% for Groups 1A and 2A, respectively. The mean ± SD RBC life span was 84.3 ± 8.3 days in Group 1A and 88.9 ± 6.2 days in Group 2A. The PK phase actual DSP loading doses (mean ± SEM) were 4.2 ± 0.27 mg and 16.9 ± 0.90 mg in Groups 1B and 2B, respectively. Release of dexamethasone from RBCs in vivo peaked at 1 hour, and a sustained release of dexamethasone could be detected until 35 days after the single intravenous infusion in Group 2B. The mean RBC in vivo recovery for DSP-loaded processed cells compares similarly to the 24-hour recovery of regulated RBC products intended for transfusion. There was a minimal but acceptable adverse impact on the survival of EDS-processed RBCs. DSP-loaded autologous RBCs, prepared using the EDS, delivered a sustained dose of dexamethasone in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app