Add like
Add dislike
Add to saved papers

Piezoelectric line detector array for photoacoustic tomography.

Photoacoustics 2017 December
Photoacoustic tomography relies on a dense coverage of the surface surrounding the imaged object with ultrasound sensors in order to enable an accurate reconstruction. A curved arrangement of integrating line sensors is proposed that is able to acquire data for a linear projection image of the absorbed energy density distribution in the object. Upon rotation of the object relative to the array, three-dimensional (3D) images can be obtained. The proposed design is based on the cost-effective piezoelectric polymer film technology with 64 line shaped sensors arranged on a half-cylindrical surface. It is combined with an optical parametric oscillator for the near infrared as a source for laser pulses. Image reconstruction from recorded signals consists of two-dimensional (2D) back projection followed by an inverse Radon transform. The tomograph exhibits a spatial resolution on the order of 200 to 250 μm. In a phantom experiment, the steps from acquisition of a single, 2D projection image to a full 3D image are demonstrated. Finally, in vivo projection images of a human finger are shown, revealing the near real-time imaging capability of the device in 2D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app