Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nerve Decompression Improves Spinal Synaptic Plasticity of Opioid Receptors for Pain Relief.

Neurotoxicity Research 2018 Februrary
Nerve decompression is an essential therapeutic strategy for pain relief clinically; however, its potential mechanism remains poorly understood. Opioid analgesics acting on opioid receptors (OR) within the various regions of the nervous system have been used widely for pain management. We therefore hypothesized that nerve decompression in a neuropathic pain model of chronic constriction injury (CCI) improves the synaptic OR plasticity in the dorsal horn, which is in response to alleviate pain hypersensitivity. After CCI, the Sprague-Dawley rats were assigned into Decompression group, in which the ligatures around the sciatic nerve were removed at post-operative week 4 (POW 4), and a CCI group, in which the ligatures remained. Pain hypersensitivity, including thermal hyperalgesia and mechanical allodynia, was entirely normalized in Decompression group within the following 4 weeks. Substantial reversal of mu- and delta-OR immunoreactive (IR) expressions in Decompression group was detected in primary afferent terminals in the dorsal horn. In Decompression group, mu-OR antagonist (CTOP, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 [Disulfide Bridge: 2-7]) and delta-OR antagonist (NTI, 17-(cyclopropylmethyl)-6,7-dehydro-4,5α-epoxy-3,14-dihydroxy-6,7-2',3'-indolomorphinan hydrochloride) re-induced pain hypersensitivity by intrathecal administration in a dose-responsive manner. Additionally, mu-OR agonist (DAMGO, [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin) and delta-OR agonist (SNC80, ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide) were administrated intrathecally to attenuating CCI-induced chronic and acute pain hypersensitivity dose-dependently. Our current results strongly suggested that nerve decompression provides the opportunity for improving the synaptic OR plasticity in the dorsal horn and pharmacological blockade presents a novel insight into the therapeutic strategy for pain hypersensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app