Add like
Add dislike
Add to saved papers

Concurrent spectrometry of annihilation radiation and characteristic gamma-rays for activity assessment of selected positron emitters.

A method is described to determine the activity of non-pure positron emitters in a radionuclide production environment by assessing the 511keV annihilation radiation concurrently with selected γ-lines, using a single High-Purity Germanium (HPGe) detector. Liquid sources of22 Na,52 Fe,52m Mn,61 Cu,64 Cu,65 Zn,66 Ga,68 Ga,82 Rb,88 Y,89 Zr and132 Cs were prepared specifically for this study. Acrylic absorbers surrounding the sources ensured that the emitted β+ -particles could not escape and annihilate away from the source region. The absorber thickness was matched to the maximum β+ energy for each radionuclide. The effect on the 511keV detection efficiency by the non-homogeneous distribution of annihilation sites inside the source and absorber materials was investigated by means of Monte Carlo simulations. It was found that no self-absorption corrections other than those implicit to the detector calibration procedure needed to be applied. The medically important radionuclide,64 Cu, is of particular interest as its strongest characteristic γ-ray has an intensity of less than 0.5%. In spite of the weakness of its emission intensity, the 1346keV γ-line is shown to be suitable for quantifying the64 Cu production yield after chemical separation from the target matrix has been performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app