Add like
Add dislike
Add to saved papers

Prevention of Diabetic Nephropathy by Modified Acidic Fibroblast Growth Factor.

Nephron 2017
BACKGROUND/AIMS: Oxidative stress (OS) contributes to all chronic diabetic complications, including diabetic nephropathy (DN). Acidic fibroblast growth factor (aFGF) has shown to confer protection from OS. However, it also has potent angiogenic activity. We hypothesized that a modified human aFGF (maFGF), with antioxidant properties but devoid of angiogenic activity, has preventative action in DN.

METHODS: Streptozotocin-induced diabetic mice were treated with maFGF (intraperitoneally) daily for 1 or 6 months and were compared with untreated diabetic and non-diabetic controls. Microalbuminuria was assessed to determine functional damage. Renal cortical tissues were examined for multiple extracellular matrix proteins, vasoactive factors and OS markers. For mechanistic studies, immortalized mouse podocytes and human microvascular endothelial cells were exposed to high (25 mM) or low glucose (5 mM). OS, vasoactive factors, fibrosis and apoptosis-related gene expression were tested by real-time qPCR and Enzyme-Linked Immunosorbent Assay. Nitric oxide (NO) analyses were also performed.

RESULTS: maFGF did not affect body weight and glycemia but prevented renal hypertrophy and functional changes in DN. It also prevented diabetes-induced DNA damage, nitrosative stress, vasoactive factors, angiotensinogen and endothelial NO synthase alterations. Although it failed to prevent transforming growth factor (TGF)-β1 mRNA upregulation, it prevented fibronectin production. Similar results were obtained in vitro. Decreased NO production in vivo and in vitro was also prevented by maFGF.

CONCLUSIONS: maFGF treatment prevents DN. This prevention probably involves NO production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app