Add like
Add dislike
Add to saved papers

Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer's disease from tauopathies.

Selective detection and staining of toxic amyloid plaques, a potential biomarker present in the Alzheimer's disease (AD) brain is crucial for both clinical diagnosis and monitoring AD disease progression. Herein, we report a coumarin-quinoline (CQ) conjugate-based turn-on near-infrared (NIR) fluorescence probe for specific detection of β-amyloid (Aβ) aggregates. CQ probe is highly sensitive and exhibits ~100-fold fluorescence enhancement in vitro upon binding Aβ aggregates with enhanced quantum yield. Furthermore, the probe has ~10-fold higher binding affinity towards Aβ aggregates (86nM) compared to commonly used Thioflavin T. Most importantly, CQ probe displays unambiguous selectivity towards Aβ aggregates compared to other toxic protein aggregates such as tau, α-synuclein (α-Syn) and islet amyloid polypeptide (IAPP). In addition, CQ is nontoxic to neuronal cells and shows significant blood brain barrier permeability. Remarkably, CQ stains Aβ plaques in human brain tissue over co-existing tau aggregates and neurofibrillary tangles (NFTs), which are associated in AD and tauopathies. This is a highly desirable attribute to distinguish AD from tau pathology and mixed dementia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app