Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Reversible swelling of SBMV is associated with reversible disordering.

The structures of the compact and swollen southern bean mosaic virus (SBMV) particles have been compared by X-ray diffraction and proton magnetic resonance (PMR). Small-angle X-ray scattering showed that removal of divalent cations at alkaline pH causes the particle diameter to increase from 289Å in the native SBMV by 12% in solution and by 9% in microcrystals. The swelling is fully reversible upon re-addition of Ca2+ and Mg2+ ions, as shown by the X-ray patterns at 6Å resolution and by the 270MHz PMR spectra. Beyond 30Å resolution, X-ray patterns from the compact SBMV in solution and in microcrystals show fine fringes of ∼1/225Å-1 width extending to 6Å resolution, whereas patterns from the swollen SBMV in solution and in microcrystals show only broader fringes of ∼1/90Å-1 width, Model calculations demonstrate that the fine fringes from compact SBMV arise from regular packing of the protein subunits on the icosahedral surface lattice; the smearing of fine fringes in the swollen virus pattern can be simulated by uncorrelated displacements of pentamers and hexamers of protein subunits, with a standard deviation of 6Å from their mean locations. The PMR spectrum of compact SBMV is poorly resolved, whereas PMR spectrum of swollen SBMV shows sharp resonances in the methyl proton region. The line-narrowing for a fraction of the aliphatic protons upon swelling cannot be accounted for by rotational relaxation of the particle of 6×106 MW, but must be attributed to internal motion in small regions of the protein subunits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app