Add like
Add dislike
Add to saved papers

Highly expressed long non-coding RNA NNT-AS1 promotes cell proliferation and invasion through Wnt/β-catenin signaling pathway in cervical cancer.

BACKGROUND: Cervical cancer is the most common gynecological malignancies in women worldwide. The previous study showed that lncRNA NNT-AS1 could play an important role in tumor development and metastasis of colorectal cancer. However, little is known about the function of NNT-AS1 in cervical cancer. The aim of this study was to investigate the expression profile of NNT-AS1 in cervical cancer and assess its possible molecular mechanism.

METHODS: Relative expression levels of NNT-AS1 in cervical cancer tissues were determined by qRT-PCR. The biologic functions of NNT-AS1 in cervical cancer were explored by MTT assay, transwell assay and flow cytometric analysis in vitro. The influence of NNT-AS1 on tumorigenesis was measured by mice xenograft model. In addition, we evaluated the activation of Wnt/β-catenin signaling pathway by luciferase assay and western blot.

RESULTS: Our results showed that NNT-AS1 expression in cervical cancer tissues compared with adjacent non-tumor tissues the overexpression of NNT-AS1 was positively associated with advanced FIGO stage, lymph node metastasis, depth of cervical invasion and poorer overall survival. Function assays showed that NNT-AS1 inhibition could suppress cervical cancer cells proliferation and invasion ability in vitro as well as the activation of Wnt/β-catenin signaling pathway. In vivo mice xenograft model revealed that silencing NNT-AS1 could reduce tumor growth in nude mice.

CONCLUSIONS: The results of the current study suggested that NNT-AS1 might play an important role in cervical carcinogenesis and might serve as a potentially therapeutic target and prognostic marker in the treatment of cervical cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app