Add like
Add dislike
Add to saved papers

Salidroside Attenuates Ventilation Induced Lung Injury via SIRT1-Dependent Inhibition of NLRP3 Inflammasome.

BACKGROUND: Salidroside (SDS) is the main effective ingredient of Rhodiola rosea L with a variety of pharmacologic properties. We aim to investigate the effects of SDS on ventilation induced lung injury (VILI) and explore the possible underlying molecular mechanism.

METHODS: Lung injury was induced in male ICR mice via mechanical ventilation (30 ml/kg) for 4h. The mice were divided in four groups:(1) Control group; (2) Ventilation group; (3) SDS group; (4) Ventilation with SDS group. SDS (50 mg/kg) was injected intraperitoneally 1h before operation. Mouse lung vascular endothelial cells (MLVECs) were subjected to cyclic stretch for 4h.

RESULTS: It was found that SDS attenuated VILI as shown in HE staining, cell count and protein content levels in BAL fluid, W/D and Evans blue dye leakage into the lung tissue. SDS treatment inhibited the activation of NLRP3 inflammasome and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion both in vivo and in vitro. Moreover, SDS administration up-regulated SIRT1 expression. Importantly, knockdown of SIRT1 reversed the inhibitory effect of SDS on NLRP3 inflammasome activation.

CONCLUSIONS: Taken together, these findings indicate that SDS may confer protection against ventilation induced lung injury via SIRT1-de-pendent inhibition of NLRP3 inflammasome activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app