Add like
Add dislike
Add to saved papers

Cadmium Compartmentalization in the Pulmonate Snail Lymnaea stagnalis: Improving Our Understanding of Exposure.

In ecotoxicology, analytical compartmentalization analysis can be used to better understand metal sequestration and detoxification. Metals are typically found in two main compartments, biologically detoxified metal (BDM) and metal sensitive fractions (MSF). The purpose of this study was to analyze the subcellular distribution of cadmium (Cd) in Lymnaea stagnalis. Adult snails were exposed to three concentrations of Cd for 56 days as part of a global ring test for L. stagnalis. At the end of the 56-day exposure, organisms were separated in two sections (viscera and foot). Each section was subsequently divided by differential centrifugation into five total fractions including (metal rich granules, debris, Organelles, heat denatured proteins, and heat stable proteins) followed by Cd analysis. The concentration in each compartment, BDM, MSF, and bioconcentration factors were estimated as well. There was significantly higher bioconcentration of Cd in the viscera section compared with the foot. Cadmium accumulation in all five fractions also increased with increasing exposure concentrations. Cadmium accumulated the most in the heat denatured protein fraction (enzymes) and accumulated the least in the heat stable protein fraction (metallothionein-like proteins). The MSF compartment (~65%) was in higher proportion than the BDM (~30%), but only in the lowest Cd exposure concentration was there a significant difference between these compartments. The results indicated that, in general, there was more Cd accumulated in the metal sensitive fractions, and that the detoxification mechanisms were not efficient enough to avoid toxicity at the two highest concentrations. This study provides evidence that improves our understanding of Cd tissue distribution in freshwater gastropods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app