Journal Article
Review
Add like
Add dislike
Add to saved papers

Multiple Roles of Angiopoietin-Like 4 in Osteolytic Disease.

Hypoxia and the hypoxia-inducible factor (HIF) transcription factor drive pathological bone loss in conditions including rheumatoid arthritis (RA), osteoarthritis, osteoporosis, primary bone tumours, and bone metastatic cancer. There is therefore considerable interest in determining the function(s) of HIF-induced genes in these pathologies. Angiopoietin-like 4 (ANGPTL4) is an adipose-derived, HIF-1α- and PPARγ-induced gene that was originally discovered as an endocrine and autocrine/paracrine regulator of lipid metabolism. Given the inverse relationship between bone adiposity and fracture risk, ANGPTL4 might be considered a good candidate for mediating the downstream effects of HIF-1α relevant to osteolytic disease. This review will consider the possible roles of ANGPTL4 in regulation of osteoclast-mediated bone resorption, cartilage degradation, angiogenesis, and inflammation, focusing on results obtained in the study of RA. Possible roles in other musculoskeletal pathologies will also be discussed. This will highlight ANGPTL4 as a regulator of multiple disease processes, which could represent a novel therapeutic target in osteolytic musculoskeletal disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app