Add like
Add dislike
Add to saved papers

TβRII Regulates the Proliferation of Metanephric Mesenchyme Cells through Six2 In Vitro.

The transforming growth factor-β (TGFβ) family signaling pathways play an important role in regulatory cellular networks and exert specific effects on developmental programs during embryo development. However, the function of TGFβ signaling pathways on the early kidney development remains unclear. In this work, we aim to detect the underlying role of TGFβ type II receptor (TβRII) in vitro, which has a similar expression pattern as the crucial regulator Six2 during early kidney development. Firstly, the 5-ethynyl-2'-deoxyuridine (EdU) assay showed knock down of TβRII significantly decreased the proliferation ratio of metanephric mesenchyme (MM) cells. Additionally, real-time Polymerase Chain Reaction (PCR) and Western blot together with immunofluorescence determined that the mRNA and protein levels of Six2 declined after TβRII knock down. Also, Six2 was observed to be able to partially rescue the proliferation phenotype caused by the depletion of TβRII. Moreover, bioinformatics analysis and luciferase assay indicated Smad3 could transcriptionally target Six2. Further, the EdU assay showed that Smad3 could also rescue the inhibition of proliferation caused by the knock down of TβRII. Taken together, these findings delineate the important function of the TGFβ signaling pathway in the early development of kidney and TβRII was shown to be able to promote the expression of Six2 through Smad3 mediating transcriptional regulation and in turn activate the proliferation of MM cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app