Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Elucidating the Role of the Desmosome Protein p53 Apoptosis Effector Related to PMP-22 in Growth Hormone Tumors.

Endocrinology 2017 May 2
Densely granulated and sparsely granulated (SG) growth hormone (GH) pituitary adenomas differ in biological behavior, which may be correlated with their known differences in cytoplasmic keratin distribution and E-cadherin expression. We wanted to explore candidate genes that might further explain this behavior. Exon expression microarray was performed on 21 GH tumors (10 SG and 11 densely granulated) and 20 normal control pituitaries from autopsy. Bioinformatic analyses confirmed a differential molecular signature between normal pituitary and GH tumors as well as between the GH tumor subtypes. There was a consistent downregulation of transcripts involved in the structure and function of the desmosome, including desmoplakin (eightfold), desmoglein 2 (sixfold), plakophilin 2 (sevenfold), and p53 apoptosis effector related to PMP-22 (PERP; sixfold) in SG tumors compared with normal pituitary. PERP is lost in more aggressive SG human GH pituitary tumors. PERP re-expression in GH3 rat GH tumor cells resulted in decreased colony formation compared with vector transfectants, confirming the role of PERP as a tumor suppressor with no effects on proliferation. Increased PERP expression was associated with loss of a survival advantage in a hypoxic environment, as assessed by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (P < 0.05) and cleaved caspase-3 (P < 0.05). Downregulation of desmosomal formation transcripts including PERP may contribute to the aggressive phenotype seen in SG GH pituitary tumors and their behavior in response to surgery and medical therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app