Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

An articulated ankle-foot orthosis with adjustable plantarflexion resistance, dorsiflexion resistance and alignment: A pilot study on mechanical properties and effects on stroke hemiparetic gait.

Mechanical properties of an articulated ankle-foot orthosis (AFO) are closely related to gait performance in individuals post-stroke. This paper presents a pilot study on the mechanical properties of a novel articulated AFO with adjustable plantarflexion resistance, dorsiflexion resistance and alignment, and its effect on ankle and knee joint kinematics and kinetics in an individual post-stroke during gait. The mechanical properties of the AFO were quantified. Gait analysis was performed using a 3D motion capture system with a split-belt instrumented treadmill under 12 different settings of the mechanical properties of the AFO [i.e. 4 plantarflexion resistances (P1<P4), 4 dorsiflexion resistances (D1<D4), 4 initial alignments (A1<A4)]. The AFO demonstrated systematic changes in moment-angle relationship in response to changes in AFO joint settings. The gait analysis demonstrated that the ankle and knee angle and moment were responsive to changes in the AFO joint settings. Mean ankle angle at initial contact changed from -0.86° (P1) to 0.91° (P4) and from -1.48° (A1) to 4.45° (A4), while mean peak dorsiflexion angle changed from 12.01° (D1) to 6.40° (D4) at mid-stance. The novel articulated AFO appeared effective in influencing lower-limb joint kinematics and kinetics of gait in the individual post-stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app