Add like
Add dislike
Add to saved papers

FDG PET/MR Imaging Coregistration Helps Predict Survival in Patients with Glioblastoma and Radiologic Progression after Standard of Care Treatment.

Radiology 2017 May
Purpose To determine the correlation between metabolic activity at fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and survival in patients with glioblastoma and suspected progression at posttherapy magnetic resonance (MR) imaging. Materials and Methods The authors retrospectively examined the relationship between metabolic activity at FDG PET in the residual lesion identified at brain MR imaging and survival time in 56 patients with glioblastoma who were treated with postoperative concurrent radiation and temozolomide therapy and who underwent FDG PET/computed tomography because of radiologic deterioration at follow-up MR imaging between 2006 and 2015. A normalized metric of metabolic activity in the residual lesion (standardized uptake value ratio [SUVr ]) was calculated as the maximum standardized uptake value (SUVmax ) in the tumor relative to that in healthy white matter. The primary end point of the study was survival time from PET. Patients were stratified according to SUVr . Comparisons of risk for death between subgroups were made with the log-hazard ratio of the Cox proportional hazard model. Results There was a significant association between overall survival and SUVr in the residual lesion (P = .006), and a survival benefit was observed in patients with SUVr of less than 1.7, who had a median survival time of 23.1 months (95% confidence interval [CI]: 12.7, 38.9), which was significantly longer than that in patients with an SUVr of 2.0 to less than 2.5 and those with an SUVr of at least 2.5, who had a median survival time of 10.1 (95% CI: 2.4, 15.9; P = .008) and 7.5 (95% CI: 3.9, 9.7; P < .001) months, respectively. Conclusion Patients with glioblastoma whose posttherapy MR images showed a residual lesion with high relative metabolic activity at FDG PET had a shorter survival time than did those with low activity at FDG PET. © RSNA, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app