Add like
Add dislike
Add to saved papers

Reliability of inertial sensors in the assessment of patients with vestibular disorders: a feasibility study.

BACKGROUND: Vestibular disorders affect an individual's stability, balance, and gait and predispose them to falls. Traditional laboratory-based semi-objective vestibular assessments are intrusive and cumbersome provide little information about their functional ability. Commercially available wearable inertial sensors allow us to make this real life assessments objective, with a detailed view of their functional abilities. Timed Up and Go (TUG) and Postural Sway tests are commonly used tests for gait and balance assessments. Our aim was to assess the feasibility, test-retest reliability and ability to classify fall status in individuals with vestibular disorders using parameters derived from the commercially available wearable system (inertial sensors and the Mobility Lab Software, APDM, Inc.).

METHODS: We recruited 27 individuals diagnosed either with unilateral or bilateral vestibular loss on vestibular function testing. Instrumented Timed Up and Go (iTUG) and Postural Sway (iSway) were administered three times during the first session and then repeated at a similar time the following week. To evaluate within and between sessions reliability of the parameters the Intra-Class Correlation coefficient (ICC) was used. Subsequently, the ability of reliable parameters (ICC ≥ 0.8) to classify fallers from non-fallers was estimated.

RESULTS: The iTUG test parameters showed good within and between sessions' reliability with mean ICC (between-sessions) values of 0.81 ± 0.17 and 0.69 ± 0.15, respectively. For the iSway test, the relative figures were; 0.76 ± 0.13 and 0.71 ± 0.14, respectively. A retrospective falls classification analysis with past 12 months falls history data yielded an accuracy of 66.70% with an area under the curve of 0.79. Mean Distance from centre of COP (mm) of accelerometer's trajectory (m/s(2)) from the iSway test was the only significant parameter to classify fallers from non-fallers.

CONCLUSIONS: Using a commercially available wearable system a subset of reliable iTUG and iSway parameters were identified and their ability to classify fallers were estimated. These parameters have potential to augment assessments of vestibular patients to enable clinicians and therapists to provide objective, tailored, personalised interventions for their gait and postural control and also to objectively evaluate and monitor the efficiency of their interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app