Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human Blood CD1c+ Dendritic Cells Encompass CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions.

Journal of Immunology 2017 Februrary 16
There are three major dendritic cell (DC) subsets in both humans and mice, that is, plasmacytoid DCs and two types of conventional DCs (cDCs), cDC1s and cDC2s. cDC2s are important for polarizing CD4+ naive T cells into different subsets, including Th1, Th2, Th17, Th22, and regulatory T cells. In mice, cDC2s can be further divided into phenotypically and functionally distinct subgroups. However, subsets of human cDC2s have not been reported. In the present study, we showed that human blood CD1c+ cDCs (cDC2s) can be further separated into two subpopulations according to their CD5 expression status. Comparative transcriptome analyses showed that the CD5high DCs expressed higher levels of cDC2-specific genes, including IFN regulatory factor 4, which is essential for the cDC2 development and its migration to lymph nodes. In contrast, CD5low DCs preferentially expressed monocyte-related genes, including the lineage-specific transcription factor MAFB. Furthermore, compared with the CD5low subpopulation, the CD5high subpopulation showed stronger migration toward CCL21 and overrepresentation among migratory DCs in lymph nodes. Additionally, the CD5high DCs induced naive T cell proliferation more potently than did the CD5low DCs. Moreover, CD5high DCs induced higher levels of IL-10-, IL-22-, and IL-4-producing T cell formation, whereas CD5low DCs induced higher levels of IFN-γ-producing T cell formation. Thus, we show that human blood CD1c+ cDC2s encompass two subsets that differ significantly in phenotype, that is, gene expression and functions. We propose that these two subsets of human cDC2s could potentially play contrasting roles in immunity or tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app