OPEN IN READ APP
JOURNAL ARTICLE

AMPK does not play a requisite role in regulation of PPARGC1A gene expression via the alternative promoter in endurance-trained human skeletal muscle

Daniil V Popov, Evgeny A Lysenko, Alexey D Butkov, Tatiana F Vepkhvadze, Dmitriy V Perfilov, Olga L Vinogradova
Experimental Physiology 2017 March 1, 102 (3): 366-375
28074493
What is the central question of this study? This study was designed to investigate the role of AMPK in the regulation of PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. What is the main finding and its importance? Low-intensity exercise markedly increased the expression of PGC-1α mRNA via the alternative promoter, without increases in ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. A single dose of the AMPK activator metformin indicated that AMPK was not involved in regulating PGC-1α mRNA expression via the alternative promoter in endurance-trained human skeletal muscle. In human skeletal muscle, PGC-1α is constitutively expressed via the canonical promoter. In contrast, the expression of PGC-1α mRNA via the alternative promoter was found to be highly dependent on the intensity of exercise and to contribute largely to the postexercise increase of total PGC-1α mRNA. This study investigated the role of AMPK in regulating PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. AMPK activation and PGC-1α gene expression were assayed in skeletal muscle of nine endurance-trained men before and after low-intensity exercise (38% of maximal oxygen uptake) and with or without administration of a single dose (2 g) of the AMPK activator metformin. Low-intensity exercise markedly and significantly increased (∼100-fold, P < 0.05) the expression of PGC-1α mRNA via the alternative promoter, without increasing ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. Moreover, in contrast to placebo, metformin increased the level of ACCSer79/222 phosphorylation immediately after exercise (2.6-fold, P < 0.05). However postexercise expression of PGC-1α gene via the alternative promoter was not affected. This study was unable to confirm that AMPK plays a role in regulating PGC-1α gene expression via the alternative promoter in endurance-trained human skeletal muscle.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
28074493
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"