Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress.

Molecular Cell 2016 December 16
Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis. This mitotic DNA synthesis, termed MiDAS, requires the MUS81-EME1 endonuclease and a non-catalytic subunit of the Pol-delta complex, POLD3. Here, we examine the contribution of HR factors in promoting MiDAS in human cells. We report that RAD51 and BRCA2 are dispensable for MiDAS but are required to counteract replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective inhibition of MiDAS may comprise a potential therapeutic strategy to sensitize cancer cells undergoing replicative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app