Add like
Add dislike
Add to saved papers

Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy.

Recent studies have identified that CuS nanocrystal (CuS NCs) could be used as a new class of promising photo-thermal agents due to their excellent plasmonic absorption abilities in a wide near-infrared (NIR) region. However, most of nanocarriers lack target capacity for combining chemotherapy and photothermal therapy effects. Herein, we reported chitosan (CS)-encapsulated and folic acid (FA)-modified nanoparticles (NPs) simultaneously loading with functionalized CuS NCs and docetaxel (DTX) (FA-DTX-PVP/CuS-NPs). Compared with free DTX, the photothermal agent CuS NCs and DTX not only could be specially targeted to deliver into MCF-7 cancer cells via a receptor-mediated endocytosis pathway, but also could be effectively transferred into tumor tissues of S180 tumor-bearing mice in vivo. More important, when combination with NIR laser irradiation, FA-DTX-PVP/CuS-NPs showed a higher antitumor efficacy than the individual therapies. Thus, as a remote and noninvasive tumor therapy strategy, these active targeting NPs may provide a great potential for tumor synergistic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app