MULTICENTER STUDY
Add like
Add dislike
Add to saved papers

A Machine Learning Approach to Identifying the Thought Markers of Suicidal Subjects: A Prospective Multicenter Trial.

Death by suicide demonstrates profound personal suffering and societal failure. While basic sciences provide the opportunity to understand biological markers related to suicide, computer science provides opportunities to understand suicide thought markers. In this novel prospective, multimodal, multicenter, mixed demographic study, we used machine learning to measure and fuse two classes of suicidal thought markers: verbal and nonverbal. Machine learning algorithms were used with the subjects' words and vocal characteristics to classify 379 subjects recruited from two academic medical centers and a rural community hospital into one of three groups: suicidal, mentally ill but not suicidal, or controls. By combining linguistic and acoustic characteristics, subjects could be classified into one of the three groups with up to 85% accuracy. The results provide insight into how advanced technology can be used for suicide assessment and prevention.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app