Add like
Add dislike
Add to saved papers

Protective Role of Corilagin on Aβ25-35-Induced Neurotoxicity: Suppression of NF-κB Signaling Pathway.

Journal of Medicinal Food 2016 September 22
Aggregation and deposition of beta-amyloid peptides (Aβ), a pathological hallmark of Alzheimer's disease, has been recognized as a potent activator of neuroinflammation and neuronal dysfunction. In this study, the underlying molecular mechanisms responsible for the neuroprotective effects of corilagin against Aβ25-35-triggered neurotoxicity and inflammatory responses were investigated in PC12 cells. Pretreatment with corilagin effectively protected PC12 cells against Aβ25-35-induced damage and apoptosis. Aβ25-35 induced damage in PC12 cells as revealed by increased production of reactive oxygen species, caspase-3 activity, and cell cycle arrest was attenuated by corilagin pretreatment. Corilagin not only significantly suppressed the production of neurotoxic inflammatory mediators such as tumor necrosis factor-α, nitric oxide, and prostaglandin E2 but also downregulated cyclooxygenase-2 and inducible nitric oxide synthase expression in PC12 cells. It also exerted a beneficial effect by suppressing the degradation of inhibitor of κB (IκB)-α and subsequent activation of transcription factor nuclear factor κB (NF-κB), mostly through inhibition of extracellular signal-regulated kinase activity in comparison to c-Jun N-terminal kinase and p38 MAP kinase (p38) mitogen-activated protein kinase activity. These findings suggest that attenuation of Aβ25-35-induced inflammatory responses by downregulating the NF-κB signaling pathway might be a valuable strategy for both Alzheimer's disease prevention and/or treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app