Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulated endosomal trafficking of Diacylglycerol lipase alpha (DAGLα) generates distinct cellular pools; implications for endocannabinoid signaling.

Diacylglycerol lipase alpha (DAGLα) generates the endocannabinoid (eCB) 2-arachidonylglycerol (2-AG) that regulates the proliferation and differentiation of neural stem cells and serves as a retrograde signaling lipid at synapses. Nothing is known about the dynamics of DAGLα expression in cells and this is important as it will govern where 2-AG can be made and released. We have developed a new construct to label DAGLα at the surface of live cells and follow its trafficking. In hippocampal neurons a cell surface pool of DAGLα co-localizes with Homer, a postsynaptic density marker. This surface pool of DAGLα is dynamic, undergoing endocytosis and recycling back to the postsynaptic membrane. A similar cycling is seen in COS-7 cells with the internalized DAGLα initially transported to EEA1 and Rab5-positive early endosomes via a clathrin-independent pathway before being transported back to the cell surface. The internalized DAGLα is present on reticular structures that co-localize with microtubules. Importantly, DAGLα cycling is a regulated process as inhibiting PKC results in a significant reduction in endocytosis. This is the first description of DAGLα cycling between the cell surface and an intracellular endosomal compartment in a manner that can regulate the level of the enzyme at the cell surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app