Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Implications of trauma and subsequent articulation on the release of Proteoglycan-4 and tissue response in adult human ankle cartilage.

The purpose of this study was to investigate the effects of trauma and subsequent articulation on adult human ankle cartilage subjected to an injurious impact. Trauma was initiated through impaction on talar cartilage explants. Articulation and loading were applied in a joint bioreactor over 5 consecutive days. The early (24 h) effects of impaction included a reduced chondrocytes viability (51% vs. 81% for non-impacted; p = 0.03), increased levels of apoptosis (43% vs. 27%; p = 0.03), and an increase in the histopathology score (4.4 vs. 1.7; p = 0.02) as compared to non-impacted cartilage explants. One of the key findings was that damage also stimulated the PRG4 release (2.2 vs. 1.5 μg/ml). Subsequent articulation for 5 days did not lead to further changes in tissue histopathology and cell viability, neither for injured nor non-injured samples. However, articulation led to an increased apoptosis in the injured samples (p = 0.03 for the interaction term). Articulation also caused a significant increase of PG/GAG release into the culture medium (p = 0.04) for both injured and non-injured samples; however, the synthesis of PG was not affected by articulation (p = 0.45) though the PG synthesis was higher in injured samples (p < 0.01). With regard to the PRG4 release, impacted samples continued to show higher amounts (p = 0.01), adding articulation led to a reduction (p = 0.02). The current study demonstrated that adult human talar cartilage increases both the PRG4 release and biosynthetic activity as an immediate cellular response to injury. Articulation played a less contributing role to biosynthesis and remodeling, behaving mostly neutral, in that no further damage emerged. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:667-676, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app