Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Ion channelopathies in functional GI disorders.

In the gastrointestinal (GI) tract, abnormalities in secretion, absorption, motility, and sensation have been implicated in functional gastrointestinal disorders (FGIDs). Ion channels play important roles in all these GI functions. Disruptions of ion channels' ability to conduct ions can lead to diseases called ion channelopathies. Channelopathies can result from changes in ion channel biophysical function or expression due to mutations, posttranslational modification, and accessory protein malfunction. Channelopathies are strongly established in the fields of cardiology and neurology, but ion channelopathies are only beginning to be recognized in gastroenterology. In this review, we describe the state of the emerging field of GI ion channelopathies. Several recent discoveries show that channelopathies result in alterations in GI motility, secretion, and sensation. In the epithelium, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) or CFTR-associating proteins result in channelopathies with constipation or diarrhea as phenotypes. In the muscle, mutations in the SCN5A-encoded voltage-gated sodium channel NaV 1.5 are associated with irritable bowel syndrome. In the sensory nerves, channelopathies of voltage-gated sodium channels NaV 1.7 and NaV 1.9 (encoded by SCN9A, SCN11A, respectively) manifest by either GI hyper- or hyposensation. Recent advances in structural biology and ion channel biophysics, coupled with personalized medicine, have fueled rapid discoveries of novel channelopathies and direct drug targeting of specific channelopathies. In summary, the emerging field of GI ion channelopathies has significant implications for functional GI disease stratification, diagnosis, and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app