Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vitamin D Deficiency Promotes Liver Tumor Growth in Transforming Growth Factor-β/Smad3-Deficient Mice Through Wnt and Toll-like Receptor 7 Pathway Modulation.

Scientific Reports 2016 July 27
Disruption of the TGF-β pathway is associated with liver fibrosis and suppression of liver tumorigenesis, conditions associated with low Vitamin D (VD) levels. However, potential contributions of VD to liver tumor progression in the context of TGF-β signaling remain unexplored. Our analyses of VD deprivation (VDD) in in vivo models of liver tumor formation revealed striking three-fold increases in tumor burden in Smad3(+/-) mice, with a three-fold increase in TLR7 expression compared to controls. ChIP and transcriptional assays confirm Smad3 binding at two TLR7 promoter SBE sites. Molecular interactions between TGF-β pathway and VDD were validated clinically, where an absence of VD supplementation was associated with low TGF-β pathway member expression levels and β-catenin activation in fibrotic/cirrhotic human liver tissues. Subsequent supplementing VD led to restoration of TGF-β member expression with lower β-catenin levels. Bioinformatics analysis provides positive supportive correlation between somatic mutations for VD-related genes and the TGF-β pathway. We conclude that VDD promotes tumor growth in the context of Smad3 disruption, potentially through regulation of TLR7 expression and β-catenin activation. VD could therefore be a strong candidate for liver cancer prevention in the context of aberrant Smad3 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app