Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

A comparative study of strontium-substituted hydroxyapatite coating on implant's osseointegration for osteopenic rats.

Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Strontium (Sr) promotes osteoblast proliferation and inhibits osteoclast proliferation and positively affects bone regeneration. The aim of this study was to confirm the effects of strontium-substituted hydroxyapatite (Sr-HA) coating via electrochemical deposition on implant's osseointegration in the osteoporotic condition. Female Sprague Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group 5 % Sr-HA; group 10 % Sr-HA; and group 20 % Sr-HA. Afterward, all rats from groups HA, 5 % Sr-HA, 10 % Sr-HA, and 20 % Sr-HA received implants with hydroxyapatite coating containing 0, 5, 10, and 20 % Sr. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group 20 % Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, these are significant differences in bone formation and push-out force was observed between groups 5 % Sr-HA and 10 % Sr-HA. This finding suggests that Sr-HA coating can improve implant osseointegration, and the 20 % Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app