Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response.

Shock 2016 August
Monocytes and macrophages are important components of the immune system, specialized in either removing pathogens as part of innate immunity or contributing to adaptive immunity through antigen presentation. Essential to such functions is classical activation (M1) and alternative activation (M2) of macrophages. M1 polarization of macrophages is characterized by production of pro-inflammatory cytokines, antimicrobial and tumoricidal activity, whereas M2 polarization of macrophages is linked to immunosuppression, tumorigenesis, wound repair, and elimination of parasites. MiRNAs are small non-coding RNAs with the ability to regulate gene expression and network of cellular processes. A number of studies have determined miRNA expression profiles in M1 and M2 polarized human and murine macrophages using microarray and RT-qPCR arrays techniques. More specifically, miR-9, miR-127, miR-155, and miR-125b have been shown to promote M1 polarization while miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a, and miR-125a-5p induce M2 polarization in macrophages by targeting various transcription factors and adaptor proteins. Further, M1 and M2 phenotypes play distinctive roles in cell growth and progression of inflammation-related diseases such as sepsis, obesity, cancer, and multiple sclerosis. Hence, miRNAs that modulate macrophage polarization may have therapeutic potential in the treatment of inflammation-related diseases. This review highlights recent findings in miRNA expression profiles in polarized macrophages from murine and human sources, and summarizes how these miRNAs regulate macrophage polarization. Last, therapeutic potential of miRNAs in inflammation-related diseases through modulation of macrophage polarization is also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app