Add like
Add dislike
Add to saved papers

BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling.

BACKGROUND AND OBJECTIVE: Idiopathic, familial and secondary pulmonary arterial hypertension (PAH) are associated with reduced bone morphogenetic protein receptor type 2 (BMPR2) expression, and in some contexts, TGF-β upregulation. Our aims were to assess BMPR2 gene therapy in a PAH mouse model and to assess the impact on TGF-β signalling.

METHODS: Using a targeted in vivo gene delivery approach, we assessed the impact of BMPR2 gene delivery in a transgenic mouse model in which PAH was first induced by doxycycline driven expression of a dominant negative BMPR2 mutant (R899X). We also assessed the impact of BMPR2 gene delivery on TGF-β-induced changes in cell signalling in human pulmonary vascular endothelial and smooth muscle cells.

RESULTS: In the mouse model, changes in TGF-β levels were not detected, but BMPR2 gene delivery reversed the increase in right ventricle systolic pressure (RVSP) and Fulton Index (FI), associated with a trend to increased pulmonary endothelial nitric oxide synthase (eNOS) gene expression. In vitro, BMPR2 gene transfer reduced TGF-β effects on Smad2, Smad1/5/8 and Erk1/2 phosphorylation in human pulmonary arterial smooth muscle cells (HPASMC). BMPR2 was also found to upregulate nitric oxide (NO) production in lung derived human microvascular endothelial cells (HMVEC-L).

CONCLUSION: This study provides further evidence that BMPR2 modulation may have therapeutic potential. See Editorial, page 406.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app