Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alpha1beta1 and integrin-linked kinase interact and modulate angiotensin II effects in vascular smooth muscle cells.

Atherosclerosis 2015 December
The effects of angiotensin II (Ang II) on vascular smooth muscle cells (VSMC) are modulated by reactive oxygen species (ROS) and also involve integrin engagement. However, the potential link between alpha1beta1 integrin signaling with NOX system and their combined contribution to Ang II effects on VSMC have not been investigated. We aimed to elucidate the moslecular mechanisms underlying the activation of these two pathways in Ang II effects on VSMC. Ang II-induced VSMC migration (2-fold increase) and proliferation (2.5-fold increase) is modulated by alpha1beta1 integrin, being inhibited by obtustatin, a specific alpha1beta1 integrin blocker. Ang II also stimulates ROS production in VSMC (140%) that is NOX1 dependent, being completely inhibited in NOX1 silenced cells. The ROS production develops in two peaks, and the second peak is maintained by NOX2 activation. Apocynin and obtustatin inhibit the NOX2-associated second peak, but not the first peak of ROS production, which is related to NOX1 activation. Corroborating the involvement of alpha1beta1 integrin, the pretreatment of VSMC with obtustatin impaired Ang II-induced FAK phosphorylation, AKT activation, p21 degradation and the increase of ILK expression. Silencing of ILK blocked cell migration, AKT phosphorylation and the second peak of ROS, but partially inhibits (70%) VSMC proliferation induced by Ang II. The data demonstrate a novel role for NOX2 in Ang II effects on VSMC, and suggest alpha1beta1 integrin and ILK as target molecules to the development of more effective therapeutic interventions in cardiovascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app