Add like
Add dislike
Add to saved papers

GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity.

Green synthesis of silver nanoparticles (AgNPs) using Hybanthus enneaspermus extract at room temperature that act as a reducing agent as well as capping agent has been investigated. The synthesized AgNPs were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), zeta potential, and dynamic light scattering (DLS) transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX). The silver surface plasmon resonance was observed at 420 nm in the UV-visible spectrum. XRD peaks were observed at 2θ values in 38.20°, 44.40°, 64.60°, and 77.50° which are indexed as (111), (200), (220), and (311) bands of face-centered cubic (fcc) structures of silver. FTIR revealed the AgNPs were capped with plant compounds of alcohol, phenols, carbonyl, amines, and amide functional groups. TEM image shows that the particles were of spherical, hexagonal, and triangular in shape, and the size range was 16-26 nm. Further, DLS exhibits the average size of 25.2 nm and the zeta values were measured (-27.1 mV) which proves the stability of the AgNPs. The conversion of Ag(+) ions into Ag(0) was calculated using inductively coupled plasma atomic emission spectroscopy (ICP-MS) and was found to be 96 %. The biosynthesized AgNPs showed the larvicidal activity with the LC50 values of 17.24 and 13.12 mg/L against the fourth-instar larvae of Anopheles subpictus and Culex quinquefasciatus, respectively. The GC-MS analysis of the plant extract showed that 39 bioactive phytochemical compounds have been found to possess a wide range of activities, which may help in the protection against incurable diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app