Role of Efferent Sympathoadrenal Effects in Cooling-Induced Hemodynamic Perturbations in Rats: An Investigation by Spectrum Analysis

Yia-Ping Liu, Yi-Hsien Lin, Chen-Cheng Lin, Yu-Chieh Lin, Yu-Chun Chen, Po-Lei Lee, Che-Se Tung
Chinese Journal of Physiology 2015 October 31, 58 (5): 312-21
Cold stress may produce hemodynamic perturbations but the underlying mechanisms are still not clear. Spectral analysis was used in this study to explore that sympathoadrenal activation could be involved in mechanisms of hemodynamic perturbations to cooling. Conscious rats after treatment with a control vehicle (saline) compared with withdrawal of sympathetic influences by ganglion blocker hexamethonium (HEX) or chemical sympathectomy guanethidine (GUA) were challenged by stressful cooling as acute immersing all four extremities in ice water (4 ± 2°C) for 10 min. Plasma nitric oxide (NO) and the appearance of Dichroitic notch (DN) were measured in comparison between treatment groups throughout the experimental course. Hemodynamic indices were telemetrically monitored, and variability of blood pressure and heart rate (BPV; HRV) were assessed over a range of frequencies: very-low frequency (VLF: 0.02-0.2 Hz), low frequency (LF: 0.2-0.6 Hz), high frequency (HF: 0.6-3 Hz), normalized (n)LF, nHF, ratio LF/HF of HRV (LF/HF(HRV)), and total power (TP: ≤3 Hz). Results showed that the concomitant reciprocal changes of spectral powers existed between frequencies of BPV and HRV to the stressful cooling (i.e. VLF(BPV) versus VLF(HRV), LF(BPV) versus LF(HRV), and nLF(BPV) versus nLF(HRV)) which contribute to the underlying mechanisms of sympathetic efferent influences and myogenic cardiovascular responsiveness. Furthermore, compared with the control vehicle in the stressful cooling, HEX restrained the increase of the pressor, tachycardia and VLF(BPV), except that VLF(HRV) was reduced. GUA abolished pressor, however, restrained the increase of the tachycardia, VLF(BPV) and LF(BPV). In addition, GUA reversed the downward tendency of nLF(BPV) into an upward tendency and attenuated both nLF(HRV) and LF/HF(HRV). DN was virtually undetectable after HEX management but was apparently noticeable after GUA management. Finally, the increase of plasma NO after cooling was diminished after HEX or GUA management. Taken together, these results substantiate that the spectral changes during stressful cooling are highly relevant to the efferent sympathetic rhythmicity and subsequent NO production.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"