Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spinal translocator protein alleviates chronic neuropathic pain behavior and modulates spinal astrocyte-neuronal function in rats with L5 spinal nerve ligation model.

Pain 2016 January
Recent studies reported the translocator protein (TSPO) to play critical roles in several kinds of neurological diseases including the inflammatory and neuropathic pain. However, the precise mechanism remains unclear. This study was undertaken to explore the distribution and possible mechanism of spinal TSPO against chronic neuropathic pain (CNP) in a rat model of L5 spinal nerve ligation (SNL). Our results showed that TSPO was upregulated in a time-related manner in the spinal dorsal horn after SNL. Spinal TSPO was predominately expressed in astrocytes. A single intrathecal injection of TSPO agonist Ro5-4864, but not TSPO antagonist PK11195, alleviated the mechanical allodynia in a dose-dependent manner. A single intraspinal injection of TSPO overexpression lentivirus (LV-TSPO), but not TSPO inhibited lentivirus (LV-shTSPO), also relieved the development of CNP. Intrathecal administration of 2 μg Ro5-4864 on day 3 induced a significant increase of TSPO protein content at the early stage (days 5-7) while inhibited the TSPO activation during the chronic period (days 14-21) compared with the control group. Ro5-4864 suppressed the astrocytes and p-JNK1 activation and decreased the CXCL1 expression in both in vivo and in vitro studies. Ro5-4864 also attenuated the spinal CXCR2 and p-ERK expressions. These results suggested that early upregulation of TSPO could elicit potent analgesic effects against CNP, which might be partly attributed to the inhibition of CXCL1-CXCR2-dependent astrocyte-to-neuron signaling and central sensitization. TSPO signaling pathway may present a novel strategy for the treatment of CNP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app