Add like
Add dislike
Add to saved papers

Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential.

The present study focused on the finding of reducing agents for the formation of silver nanoparticles (AgNPs) from the plant, Trichosanthes tricuspidata. The synthesized AgNPs were characterized using UV-Visible spectroscopy, particle size analyzer (PSA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. The UV-Visible spectrum resulted a sharp peak (at 430nm) represents the strong plasmon resonance of silver. The average size distributions of AgNPs were found to be 78.49nm, through (PSA), and the silver ion with its crystalline nature was confirmed using intensity (2θ) peak value of 38.22°, 44.66°, 64.61°, and 77.49°. The SEM micrograph revealed that the synthesized AgNPs have a spherical morphology with the size ranges from 20 to 28nm. AFM showed the presence of polydispersed AgNPs with its size (20 to 60nm in height). The gas chromatography-mass spectroscopy (GC-MS) study analyzed the responsible compounds present in the methanolic extracts for the bio-reduction of AgNPs and their antibacterial effect was studied. AgNPs exhibited preponderant activity than the methanolic extracts on clinical pathogens. Thus, the synthesized AgNPs might act as an effective antibacterial agent. Further studies are required to isolate the specific compound responsible for the reduction capability and its their inhibitory mechanisms for target bacterial strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app