Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array.

Photoacoustic imaging can achieve high-resolution three-dimensional (3-D) visualization of optical absorbers at penetration depths of ∼1 cm in biological tissues by detecting optically induced high ultrasound frequencies. Tomographic acquisition with ultrasound linear arrays offers an easy implementation of single-side access, parallelized, and high-frequency detection, but usually comes with an image quality impaired by the directionality of the detectors. Indeed, a simple translation of the array perpendicular to its median imaging plane is often used, but results both in a poor resolution in the translation direction and strong limited-view artifacts.To improve the spatial resolution and the visibility of complex structures while retaining a planar detection geometry, we introduce, in this paper, a rotate-translate scanning scheme and investigate the performance ofa scanner implemented at 15 MHz center frequency. The developed system achieved a quasi-isotropic uniform 3-D resolution of ∼170 μm over a cubic volume of side length 8.5 mm, i.e., an improvement in the resolution in the translation direction by almost one order of magnitude. Dual-wavelength imaging was also demonstrated with ultrafast wavelength shifting. The validity of our approach was shown in vitro. We discuss the ability to enable in vivo imaging for preclinical and clinical studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app