Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers.

Biomaterials 2015 July
The combination therapy has exhibited important potential for the treatment of cancers, especially for drug-resistant cancers. In this report, bi-functional nanoprobes based on doxorubicin (DOX)-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers (FA-NPs-DOX) were synthesized for in vivo near infrared (NIR)-triggered inorganic photodynamic therapy (PDT) and enhanced chemotherapy to overcome the multidrug resistance (MDR) in breast cancers. Using the up-conversion luminescence (UCL) performance of NaYF4:Yb/Tm converting near-infrared (NIR) into ultraviolent (UV) lights, reactive oxygen species (ROS) were triggered from TiO2 inorganic photosensitizers for PDT under the irradiation of a 980 nm laser, by which the deep-penetration and low photo-damage could be reached. Moreover, nanocarrier delivery and folic acid (FA) targeting promoted the cellular uptake, and accelerated the release of DOX in drug-sensitive MCF-7 and resistant MCF-7/ADR cells. The toxicity assessment in vitro and in vivo revealed the good biocompatibility of the as-prepared FA-NPs-DOX nanocomposites. By the combination of enhanced chemotherapy and NIR-triggered inorganic PDT, the viability of MCF-7/ADR cells could decrease by 53.5%, and the inhibition rate of MCF-7/ADR tumors could increase up to 90.33%, compared with free DOX. Therefore, the MDR of breast cancers could be obviously overcome by enhanced chemotherapy and NIR-triggered inorganic PDT of FA-NPs-DOX nanocomposites under the excitation of a 980 nm laser.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app