Add like
Add dislike
Add to saved papers

Transcatheter Closure of Perimembranous Ventricular Septal Defects with Left Ventricular to Right Atrial Shunt.

During the development of so-called aneurysmal transformation of perimembranous ventricular septal defects (pmVSD), tricuspid valve (TV) morphology and function may be altered resulting in left ventricular (LV) to right atrial (RA) shunting. The feasibility and outcome of interventional closure of these pmVSD has not been investigated so far. Interventional closure of pmVSD associated with mild to moderate LV-to-RA shunt was performed in four patients (aged 6.5-12.5 years). pmVSD were closed under fluoroscopic guidance by establishing an arteriovenous wire loop via a femoral artery and advancing the delivery sheath from a femoral vein. Before device release (or withdrawal if necessary), residual shunting across the device and TV valve function was investigated by transthoracic echocardiography and LV angiography. pmVSD sizes of 4, 5.5, 8 and 8.5 mm were closed with a 4/4 and 6/6 Amplatzer duct occluder II and an 8- and 10-mm Amplatzer muscular VSD occluder device, respectively. There were no or only minor residual postinterventional LV-to-RA shunts. No atrioventricular blocks were observed during a mean follow-up of 12.5 months (range 6.5-17 months). Transthoracic echocardiography indicated that the elimination of the VSD jet pushing the antero-superior TV leaflet open is the key mechanism for LV-to-RA shunt reduction after transcatheter pmVSD closure. Interventional closure in pmVSD associated with mild to moderate indirect LV-to-RA shunting is feasible and results in significant reduction in or elimination of LV-to-RA shunting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app