Add like
Add dislike
Add to saved papers

Strain and process development for poly(3HB-co-3HP) fermentation by engineered Shimwellia blattae from glycerol.

Poly(3-hydroxybytyrate-co-3-hydroxypropionate), poly(3HB-co-3HP), is a possible alternative to synthetic polymers such as polypropylene, polystyrene and polyethylene due to its low crystallinity and fragility. We already reported that recombinant strains of Shimwellia blattae expressing 1,3-propanediol dehydrogenase DhaT as well as aldehyde dehydrogenase AldD of Pseudomonas putida KT2442, propionate-CoA transferase Pct of Clostridium propionicum X2 and PHA synthase PhaC1 of Ralstonia eutropha H16 are able to accumulate up to 14.5% (wtPHA/wtCDW) of poly(3-hydroxypropionate), poly(3HP), homopolymer from glycerol as a sole carbon source (Appl Microbiol Biotechnol 98:7409-7422, 2014a). However, the cell density was rather low. In this study, we optimized the medium aiming at a more efficient PHA synthesis, and we engineered a S. blattae strain accumulating poly(3HB-co-3HP) with varying contents of the constituent 3-hydroxypropionate (3HP) depending on the cultivation conditions. Consequently, 7.12, 0.77 and 0.32 gPHA/L of poly(3HB-co-3HP) containing 2.1, 8.3 and 18.1 mol% 3HP under anaerobic/aerobic (the first 24 hours under anaerobic condition, thereafter, aerobic condition), low aeration/agitation (the minimum stirring rate required in medium mixing and small amount of aeration) and anaerobic conditions (the minimum stirring rate required in medium mixing without aeration), respectively, were synthesized from glycerol by the genetically modified S. blattae ATCC33430 strains in optimized culture medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app