Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats.

After spinal cord injury (SCI), secondary damage caused by oxidative stress, inflammation, and ischemia leads to neurological deterioration. In recent years, therapeutic approaches to trauma have focused on modulating this secondary cascade. There is increasing evidence that the success of cell-based SCI therapy is due mainly to secreted factors rather than to cell implantation per se. This study investigated peripheral blood mononuclear cells as a source of factors for secretome- (MNC-secretome-) based therapy. Specifically, we investigated whether MNC-secretome had therapeutic effects in a rat SCI contusion model and its possible underlying mechanisms. Rats treated with MNC-secretome showed substantially improved functional recovery, attenuated cavity formation, and reduced acute axonal injury compared to control animals. Histological evaluation revealed higher vascular density in the spinal cords of treated animals. Immunohistochemistry showed that MNC-secretome treatment increased the recruitment of CD68(+) cells with concomitant reduction of oxidative stress as reflected by lower expression of inducible nitric oxide synthase. Notably, MNC-secretome showed angiogenic properties ex vivo in aortic rings and spinal cord tissue, and experiments showed that the angiogenic potential of MNC-secretome may be regulated by CXCL-1 upregulation in vivo. Moreover, systemic application of MNC-secretome activated the ERK1/2 pathway in the spinal cord. Taken together, these results indicate that factors in MNC-secretome can mitigate the pathophysiological processes of secondary damage after SCI and improve functional outcomes in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app